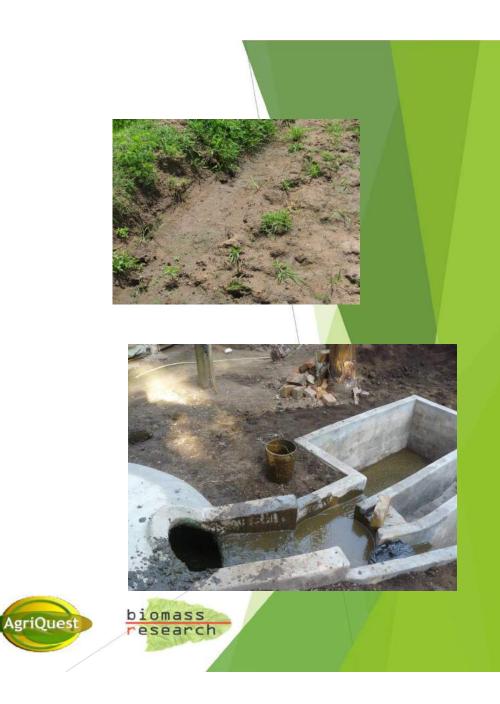
Use of bioslurry as organic fertilizer 'Clean fuels, *better soils* and more food'

NATIONAL BIOSLURRY EXTENSION CONFERENCE

Nairobi, 29 November 2017

Hans Langeveld (Biomass Research) Foluke Quist-Wessel (AgriQuest)


Sustainable Development Goals

	SDG	Key wording	Driver	Safe guard	Land relevance
2 ZERO HUNGER	2	End hunger, achieve food security and improved nutrition and promote sustainable agriculture	✓	\checkmark	high
7 AFFORDABLE AND CLEAN ENERGY	7	Ensure access to affordable, reliable, sustainable and modern energy for all	✓	(√)	high
12 RESPONSIBLE CONSUMPTION AND PRODUCTION	12	Ensure sustainable consumption and production patterns	✓	(√)	high
13 CLIMATE	13	Take urgent action to combat climate change and its impacts	✓	\checkmark	high
15 LIFE On Land	15	Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss	✓	√	high

Source: Fritsche et al. (2017). GLO report UNCCD

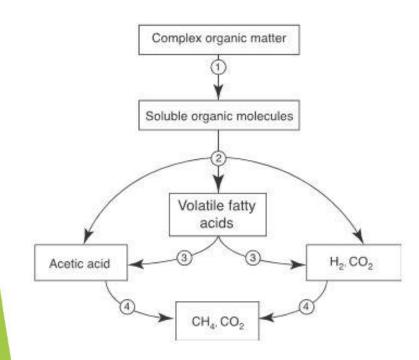
Contents

- Soils quality in Africa
- Improving soils
- Digestate or bioslurry
- The role of feedstocks
- Conclusions

Soils in Sub-Saharan Africa

- Land under pressure from population growth and overexploitation
- Result: biodiversity loss, decreased resilience and degradation of agricultural soils
- African soils are often inherently poor
- Unpredictable weather patterns increase risks for cropping

Source: UNCCD GLO report (2017); Gilbert (2012); van Ittersum et al. (2017) PNAS; Vanlauwe etal. (2014)

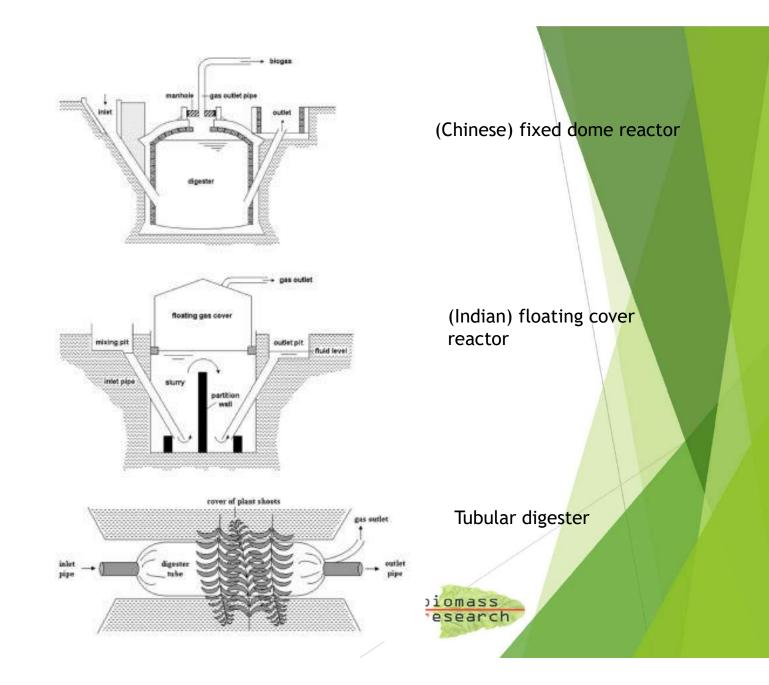

Crop nutrition

- Soils in SSA often are underfertilized and mined
- More nutrient inputs are needed, but access to fertilizers often is limited
- Nutrient and water retention must be improved
- Nutrient application and Good Agricultural Practices are key

Source: Gilbert (2012); van Ittersum et al. (2017); Vanlauwe etal. (2014); Tittonel and Giller (2013)

Anaerobic digestion (AD)

Source: Zupančič and Grilc (2012).


- Decomposition of complex organic molecules
- Four steps, involving different groups of micro-organisms
- Each group has specific preferences, condition requirements
- Result is a delicate compromise

Co-digestion

- Synchronous decomposition of crop material, household waste or residues with animal manure
- Major advantages for smallholder families
 - Increased nutrient input
 - More constant feedstock availability
 - Better digestion quality
 - ► Higher pH

Small-scale biogas reactors

Source: Bonten et al. (2014)

Farmyard manure vs bioslurry

Parameter	Value	Change ^{a)}
Dry matter, DM (%)	1.5-13.2	-1.5 to -5.5
Organic matter (as % of DM)	63.8-75.0	-5 to -15
Total N (% of DM)	3.1-14.0	b)
Total N (g/kg FM)	1.5-6.8	≈ 0
NH4 (% of total N)	44-81	+10 to +33
Total P (g/kg FM)	0.4-2.6	≈ 0
Water soluble P (% of total P)	25-45	-20 to -47
Total K (g/kg FM)	1.2-11.5	≈ 0
Total Ca	1.0-2.3	≈ 0
Total Mg	0.3-0.7	≈ 0
рН	7.3-9.0	+0.5 to +2 units

Source: Moeller, K. & Mueller, 2012

^a in comparison to undigested liquid manure, absolute values.
^b increase with degree of degradation.

DM = dry matter.

FM = fresh matter.

Bioslurry (digestate) compostion

Product	Unit	Value	
Total Solids	% of Fresh Matter	1.5 - 45.7	
Volatile Solids	% of Total Solids	38.6 - 75.4	
рН		7.3 - 9.0	
N Total	% of Dry Matter	3.1 - 14	
idem	% of Fresh Matter	0.12 - 1.5	
Nitrogen NH ₄	% of total N	35 - 81	
Total phosphorus	% of Dry Matter	0.2 - 0.35	
idem	% of Fresh Matter	0.04 - 0.26	
Total potassium	% of Dry Matter	0.19 - 4.3	
idem	% of Fresh Matter	0.12 - 1.15	

Source: adapted from Nkoa (2013; cattle manure)

Comparing biosslurry wth fertilizers

Comparison between yields of crops and vegetables with bioslurry (B) and different organic fertilizers (OF) (undigested liquid slurry (ULS), farm yard manure (FYM), vermicompost (VC), fly ash (FA), precomposted manure (PCM)): higher yield (=); lower yield (-); equal yields (=).

	В	OF					References	
Yield		ULS	FYM	vc	FA	PCM		
Winter wheat, rye, spelt	=	=	=				Möller et al, 2008	
Spring wheat	+	-	-				Möller et al, 2008	
Potato	+					-	Garfi et al, 2011	
Wheat	+						Garg et al, 2005	
Cassava leaves	+		3 .				Chau, 1998a	
Duckweed	-		+				Chau, 1998b	
Sugar cane	-			+			Singh et al, 2007	
Sugar cane	+						Singh et al, 2007	

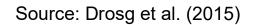
Source: De Groot and Bogdanski (2013). FAO

biomass research

Pathogens

Decimation time T90 (killing 90% of pathogens) in AD systems and untreated animal slurry

Bacteria	AD system		Untreated slurry system		
	35 ⁰ C (days)	53 ^o C (days)	18-21 ºC (weeks)	6-15 ^o C (weeks)	
Salmonella typhimurium	2.4	0.7	2.0	5.9	
Salmonella dublin	2.1	0.6	-	-	
Escherichia coli	1.8	0.4	2.0	8.8	
Staphylococcus aureus	0.9	0.5	0.9	7.1	
Coliform bacteria	3.1	-	2.1	9.3	
Group D streptococci	7.1	-	5.7	21.4	
Streptococcus faecalis	2.0	1.0	-	-	


AgriQuest

biomass research

Source: Compiled after Bendixen (1994, 1995, 1999). In: Al Seadi et al. (2013)

Contaminants

- Biological contaminants (pathogens and weed seeds)
- Physical contaminants (inert materials or larger digestible pieces)
- Chemical contaminants (heavy metals and persistent organic pollutants (POP))

The impact of feedstock on bioslurry

Substrate	Total Solids (% of Fresh Matter)	Volatile Solids (% of Total Solids)	Availability
Cattle slurry	11	82	7.3 tonne/head/y
Pig slurry	7	86	1.8 tonne/head/y
Cattle manure	25	76	7.3 tonne/head/y
Maize straw	93	97	Same yield as cereal
Food residues	20	92	55 kg/person/y
Coffee pulp	55	91	55 kg/tonne of berries
Grass silage	50	92	-

Source: Langeveld and Peterson (in press).

Feedstock composition

TEEUSLUCK	Unposition	Co-digestion can have m	ajor
Substrate	Impact on digestate	Comments	
Organic waste	Low Total Solids (TS), low share of organics in TS	Organic waste often high in readily degradable materials	
Meat, fish waste	High in nitrogen (N), high share of ammonia in N		
Manure	Low Total Solids (TS), considerable nitrogen (N) concentration	Pig manure is low in TS, cattle manure high in TS	
Energy crops, straw, woody crops	High Total Solids (TS), high share of organics in TS		

Source: Drosg etal. (2015); Al Seadi et al. (2013)

research

Feedstocks and digestate quality

Adding residues:

- Better manure handling
- Increased nitrogen availability
- Improved nitrogen use efficiency
- Good for crop growth

Effect	Liquid manure	green manure	
Manure handling	+	+++	+++
NH4+/total N ratio	+	+++	+++
pН	+ +	+ +	++
Nitrogen availability	0	++	++
Nitrogen use efficiency	0 +	+ + +	-
Phorphorus availability	0	0	0
Heavy metal availability	0 -	0 -	0 -
Crop growth	0	+ +	+++

Crop residues,

Dedicated crops

Source: Moeller, K. & Mueller, 2012

Conclusion

- Soils in Sub-Saharan Africa are often inherently poor
- Digestate make good organic fertilizers
- Feedstock composition affects quality of the digestate
- Adding other feedstocks to manure allows more efficient manure handling and more efficient nitrogen use

Thank you for your attention

For further information, please contact us

Foluke Quist-Wessel **AgriQuest** foluke.quist@gmail.com Ph: +31 6 2540 1772 Hans Langeveld **Biomass Research** hans@biomassresearch.eu Ph: +31 6 520 58 537

